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ABSTRACT

A multistep predictor-corrector method for the
numerical solution of ordinary differential equations
is developed. The difference equations employed are
generalizations, for the case of variable mesh spacing,
of previous formulas requiring fixed step size. In
addition to retaining the high local accuracy and con-
vergence properties of the earlier methods, the variable
mesh method is developed in a form conducive to the
generation of effective criteria for the selection of
subsequent step sizes in the step by step solution of
differential equations. These criteria are based on
considerations of truncation error, convergence of
corrector iterations, and an extensive treatment of
relative numerical stability. The algorithm has been
tested extensively and compared with other methods.

The results of the comparison favor the new method.
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1. INTRODUCTION. A great deal of research effort has been directed
toward the numerical solution of first order nonlinear ordinary differ-
ential equations hecause of the practical importance of such problems.
The most widely used numerical methods that have been developed for these
problems provide approximate values of the solution at discrete points
according to a stepwise computation beginning at an initial point for
which the solution is known. These methods are called one-step methods
if the calculation of the solution at a given point depends explicitly
on values of the solution and one or more of its derivatives at only one pre-
vious point. Multistep methods require values at two or more previous
points. One-step (Runge-Kutta) methods are very convenient because the
step increments can be changed readily from step to step as desired and
because the solution in the initial steps is calculated with the same
formulas as used in subsequent steps. Multistep methods, although less
convenient, are usually more efficient because, by making use of the cal-
culations of more than one previous step, less computer time is required

to achieve the same accuracy as achieved with a one-step method.

*This work was supported by the National Aeronautics and Space Administration
Office of Advanced Research and Technology under Contract No. NAS7-470.
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The research reported here was directed toward the development and testing
of variable mesh multistep methods which not only preserve the efficiency
due to the multistep structure but improve this efficiency by permitting
as much freedom in the variation of the step increments as is afforded

by one-step methods. Care was taken to formulate the basic difference
equations in a manner conducive to the development of effective criteria
for selecting the variable mesh increments as the calculation progresses.
In the following pages the basic algorithm is described and the analysis
and practical considerations justifying the mesh criteria are presented.
The mesh criteria were subjected to extensive numerical testing, and in
addition, the algorithm was compared with lmown methods in the numerical
solution of selected differential equations. The results of this and

other experimental work are summarized in later sections.

The problem of starting the computation, that is, the requirement of
computing the solution at the first few points by a separate technique

in order to initialize multistep methods, is not emphasized here for two
reasons. First, because of the variable mesh formulation, the calcula-
tion is only initialized once and never has to be restarted as would be
required in changing the step size while using a fixed step size, multi-
step method. In the second place, fairly general starting procedures

are readily available for incorporation with the variable mesh method
because the step increments used in the starting procedure can be smaller
than those used in the subsequent calculation. For example, the starting
procedure outlined in [1] for the variable mesh method consists of simply
using the one-step Adams-Bashforth/Adams-Moulton formulas for the first
step, the two-step formulas for the second step, and the three-step
formulas for third step. The same step size is used for each of these
three initial steps, and it is chosen small enough to yield the desired
accuracy at the first point. There is little danger of exceeding this

error at the second and third points since higher order formulas are used.

2 RR 67-12
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The algorithm developed in the following pages is, to a great extent,

AT A e stz Aaan Am Miatiwe
[ A8 34

seneral purpose in natu and therefore other metheds or modifications

¢, and t}
of this method may be superior in specific situations. For example,
systems of differential equations describing greatly different relaxation
rates have received particular attention in recent years because step
gize is limited by the fastest rate while the total interval of integra-
tion is determined by the slowest rate. A special purpose method, such
as the one due to Treanor [27, has obvious advantages for systems of this
type. The writer is presently studying a modification of the variable
mesh, multistep approach particularly suited to these problems. This

work will be reported at a later date.

2. VARIABLE MESH MULTISTEP FORMULAS. The initial value problems

of interest are represented by differential equations of the form

& - Flx,y), (1)

with initial condition y(xo) =Yy It is assumed at the outset that F
is continuous and satisfies the Lipschitz condition that guarantees

the existence of a unique, continuous and differentiable solution [3].
The continuity of higher derivatives will be required later in the dis-—

cussion of truncation error.
We will use the usual notation in which Yn denotes the computed value of
y(xn) and y; denotes F(xn, yn). It is assumed that the computed solution

is obtained recursively by one or more formulas of the following type:

Yn+1 T 8Yn T #¥pa t %Yo T 83V, 3

? ¢ 7 7 7
+h(b )y Y F Pyt boyy o * gy ). (2)
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Here h denotes the current step size, X 41 ~ X,» and is permitted to

vary with n. The coefficients a, and bi are also variable and it will
be convenient later to express them in terms of mesh parameters g, 53,

and y defined by

a = (x

n xn—l)/h’

™
1]

(x, - x,_p)/n, (3)

n

and Y n

(x. - xn—j)/h°
We require y > B>a>0.

For the case of fixed step size, o, B, and v have the constant values
1,2, and 3, respectively. Henrici [3] has defined conditions of con-
sistency and stability for fixed h and has shown that they are necessary
and also sufficient,when taken together, for convergence of Yy to y(xn)

as h » 0. The stability condition requires that no root of the equation
4 2
p- - a095 -8, - a,p - as = 0 (&)

exceed one in modulus and roots of unit modulus must be simple. The con-
sistency condition requires that equation (2) be exact if y(x) is either

constant or linear.

An analogous equivalence theorem holds in the variable mesh case. It
follows immediately that the stability and consistency conditions are
necessary for convergence in the variable mesh case because they are
necessary in the special case of fixed mesh. Henrici's proof of suffi-

ciency has been generalized by the author to account for the case of

L RR 67-12
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variable step size, but is omitted here because of its length. For this
h

case the two conditions are required t 0old for each different step size

o

used in the integration.

The validity of the gemeralized equivalence theorem is not restricted to
difference equations with only the number of terms actually shown in (2).
However since we will restrict the present discussion to fourth order
methods—-that is, methods with error terms proportional to the fifth power
of h—-the terms shown are adequate. The optimum order to use in a given
application depends heavily on the degree of accuracy desired, but fourth
order is a rcasonable compromise for medium range accuracy——say two to
six significant figures. With fixed step size it is often desirable to
vary the order within a given application in order to maintain a desired
accuracy. The variable mesh procedure, on the other hand, has the ad-
vantage of achieving the same objective without switching from formulas

of one order to those of another.

Both explicit (predictor) and implicit (corrector) variable mesh formulas

are used. The explicit equation has b . = 0 while the implicit usually

can be solved by iteration. The coeffiiients in (2) for the two formulas
are determined in part by requiring satisfaction of the stability and
consistency conditions. By requiring exactness for F(x,y) = 0, the rela-
tion, a + a, + a, + 33 =1, is imposed, from which it follows that one
root of equation (4) is unity. The other three roots ("parasitic") arising
because a fourth order difference equation is used in place of a first

17 %7
= 0. Making this choice, we say that the condition of stability is

order differential equation, are all zero if we select a = 1, a

°3
satisfied optimally.

RR 67-12 5
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The consistency condition is satisfied by the additional requirement
of exactness for y = X=X s which yields, for the predictor, bo + bl +

b2 + b3 = 1. Combining this with the requirements of exactness for

%(x—xn)Q, l(x—xn)j, i{x—xn)4, the b, of the predictor,

= ¢ ! ! ’ 5
Yn+1 = In * h(boyn * blyn—l * b2yn—2 * b3yn—3)’ ())

are determined recursively as follows:

_ 2(2+30) (B+0) +¥(1-20°)

o
|

3 12y (7-0) (B=7)
243 a—6'y(y—a)b3
b2 = T 68(B)
b = - 123(1+27b3+23b2)
by =1 =bs=by~b (6)

Similarly, a corrector of the form

1 7 4 z
Ype1 =V * h(d-lyn+1 * doyn * dlyn—l + d2yn—2> (7)

is found with coefficients

i = 1 +2
2~ 12 ﬁilmSEﬁﬂS

d - — 28 +1

1 7 120(1.@) (B}

Y = % - dy(148) - d; (14%)

dy=1-4,-4d -d (8)

6 RR 67-12
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For the special case of fixed step size, the above predictor and corrector
formulas reduce to the widely accepted Adams-Bashforth and Adams-¥
formulas respectively. In this connection one is reminded of the formulas
presented by Nordsieck in a paper which, like the present paper, also em-
phasizes the advantages of changing step size [47. Although the algorithm

of Nordsieck is substantially different from that presented here, it is
similar in the sense that his basic integration formulas are equivalent

to the Adams formulas. However, the formulation used by Nordsieck appears

to be much less conducive to the development of effective mesh selection
criteria than is the formulation presented above. This claim is corroborated
by evidence obtained when both methods, complete with their respective

recommended mesh selection criteria, were applied to selected differential

equations. This work is described in more detail in a later section.

Assuming continuous higher derivatives of F(x,y), it is evident upon com-
paring equation (5) with an appropriate Taylor Series representation for

y(xn+1) that the truncation error in (5) can be represented as
5
h” v 6
PI] 5! yn + O(h ))
where the coefficient Pn depends on ¢, B, and y. If we consider the

residual error resulting from the application of (5) to the polynomial
(x—x )5, we find that
n

lav)
"

A 4 A
1 -5 (bfa +b23 +hay )

1+ 25 [3(aBy) + sloBiayBy) + 6uBy]. (9)

Similarly, if the error in (7) is taken in the form

RR 67-12 7
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5
h 6
C, 57 ¥y * O(n),

Cn is found to be given by

4

(o]
i

A
1 -5 (d_1+dfy +d,,8 )

i

1 - 25 (3+2faB). (20)

Various alternative modes of utilization of the predictor and corrector

formulas are available in practice. For example, the predictor can be

used without employing the corrector at all. On the other hand, if the

corrector is used, it usually is used iteratively, with the predictor

providing the first guess. Qualitatively, some of the arguments for and

against the various alternatives are as follows:

a) Number of derivative evaluations per step. The "predictor—only"

c)

mode requires only one evaluation per step. If ome correction
is employed, a second evaluation is usually made after the cor-
rection, but is not absolutely necessary. In general, n cor-
rections require either n or n+l derivative evaluations, de-
pending on whether a final evaluation is or is not carried out.
Evaluations of complicated derivative functions frequently re-

quire a predominant portion of the total computer time.

Truncation error. Implementation of the corrector reduces the
truncation error. (It is a simple exercise to show that

e | <|®,|-)

Numerical stability. With regard to both absolute and relative
stability, the regions of stability become less restrictive as
the pumber of corrections is increased. Incidentally, these

regions become more restrictive as order is increased.

RR 67-12
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d) Availability of mesh criteria. More effective procedures for
automatically selecting the mesh inerements can he developed
for some modes than for others. This consideration favors a
predictor—-corrector mode with at least two applications of the

corrector.

An empirical program was carried out whereby the various modes were com-
pared in the actual numerical solution of selected differential equations.
The mesh increments were selected in a manner such that the total number
of derivative evaluations was the same for each mode. This work is not
reported in detail here since an even more extensive testing program of

a similar nature for the case of fixed step size was carried out and re-
ported in detail by Hull and Creemer [57]. Their conclusions are in agree-
ment with those reached in the present study. The results indicate the

following trends:

a) It is usually wasteful to use more than two corrections per step.
For example (letting p denote predictor; d derivative evaluation;
and ¢ corrector), p-d—c-d—-c is more accurate than p-d-c-d-c-d-c,

where 50-percent larger step sizes are used with the latter.

b) Ending each step with a derivative evaluation is not as efficient
as ending with a correction. For example, p-d-c-d-c and p-d-c
(with half as large step sizes) are both more accurate than
p—d-c—d. By the same token p-d-c is better than p-d, thereby

eliminating the "predictor—only" mode.

Based on the above results and the preceding qualitative arguments, it
was concluded that the mode p-d-c-d-c is favored over such a broad range
of applications that the other modes can be neglected. However, the mode

p-d-c is nearly as good in many cases.

RR 67-12 9
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A variable mesh generalization of a predictor (applicable only in the
p—d~c—d mode) due to Crane and Klopfenstein [6] was also employed in the

tests but was consistently the least accurate of the methods tested.

3. NUMERICAL STABILITY. The condition of stability used to establish
convergence in the previous section does not guarantee numerical stability
for h > 0. A more appropriate analysis of numerical stability is presented

here.

First note that each corrector iteration is performed according to the

equation

2
(k+1) _ (x) ‘
‘a4l " ¥n T hd—lF(xn+1’ cn+1) * h%iodiyn—i’

where the superscript k denotes the kth iteration. Subtracting this

equation from (7) and employing the mean value theorem gives

(k1)
Yn+1 Ch+1

U,

= A
d—l(yn+1—cn+1‘

where
SHE .
dy | x=x
ﬁn+1
4 (k)
for some 7 between Yo+l and Chil” Thus the following condition is re-

quired for convergence of the corrector iterations:

IM_1|< 1. (11)

10 RR 67-12
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It is assumed that condition (11) is satisfied in the following discussion,

u

and in fact this condition will be used in the mesh selection procedure

described in the next section.

It is also assumed for the purpose of the numerical stability analysis
that A is constant, a standard assumption in the literature for fixed step
size. By appropriate choice of h at each step, A can be made nearly con-

stant in the variable mesh case.

In practice, however, this assumption is usually violated with fixed mesh
methods, even when procedures to frequently double or halve the step size
are included. Furthermore when numerical stability is the controlling
factor, it is good policy to lkeep h as large as possible without forcing
A beyond its limitation imposed by the threat of instability. Thus in
this case, the mesh increments used are actually considerably suboptimal
at most steps with fixed mesh methods. On the other hand, the variable
mesh feature obviously allows much better optimization when the integra-
tion is stability limited. Of course when it is not stability limited,

variations in A are inconsequential.

Initially let us consider the mode which employs a prediction and k cor-
rections with a derivative evaluation after each prediction and correction.
Let € denote the propagated error, y(xn) - cék). Then it can be shown
that €, satisfies the difference equation

k . »._1
J 3 k+1 k
nil = S [1 + Jz=1>‘ d7, " (d_+d_j) + X d_lbo]

RR 67-12 11
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except for the fifth order truncation error. The effect of the predictor
on the propagated error decreases with increasing k because the factor
(Xd_l)k multiplies the bi in the above equation. In the limit the cor-

rector alone determines the error propagation, the equation being given

by

(1—>~d_1) - en(1+Mo) - € M M

1My -G 0. (12)

€+l 2~
In practice, when the mesh increments are small enough to provide a
reasonably small truncation error, the corrector iterations beyond the
second are essentially redundant. Hence the above difference equation

for the propagated error in the corrector alone also adequately represents

error propagation for the recommended mode, p-d-c-d-c.

If the difference equation (12) has constant coefficients, its solution

€, can be expressed in terms of the roots P; of the polynomial equation
?(1-M ?(1+4M M, =
p (1— _1) - P (1+ 0) - Wl - [ 0 (13)

by En = klpq + k2p§ + k3p§ (slightly modified in the case of a multiple
root), where the ki are constants. Equation (12) has constant coefficients
as required provided the di are constant as well as A, The di are constant
in the case of fixed mesh. In the variable mesh case, it is this investi-
gator's experience that the di vary very slowly when the integration is
stability limited. This is due to the fact that the ratio ¢z of mesh in-
crements from step to step remains nearly constant, and the di are con-
stant when the mesh parameters &, B, and Y are constant. (When & is con-
stant, B and ¥ are the constants & + o? and o? + Op, respectively.) Thus
it is reasonable to add the assumption of constant di'for the stability
analysis, and in view of the above remarks it becomes convenient to treat

numerical stability in terms of the two parameters A and @ ,

12 RR 67-12
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When A = 0, the fundamental root of the characteristic equation (13) is
unity and the others are zero. Whem A # 0, one or both of the latter
roots may become larger in modulus than the fundamental root. This is
a condition of relative numerical instability [7], whereas absolute
numerical instability occurs whenever any root is greater than one in
modulus or when a root of unit modulus is a multiple root. Applying
these conditions as definitions, regions of both relative and absolute
stability have been computed by tracking the roots of (13). These re-
gions are shown in Fig. 1 in terms of the parameters A and . Although
it is interesting to note the behavior for very large and small ¢, in
practice & actually remains fairly close to unity. Also shown in
Fig. 1 are the curves'K d_1 = *1, which indicate the region for which

the corrector iterations converge, and within which the stability regions

have meaning.

The variable mesh formulas are applicable for systems of differential
equations of the form
(1)

d (1 2 N .
ai——— = Fi(x,y( ),y( ),...,y( 5, i=1,2,...,,N. (14)

In this case, equation (12) for the propagated error is replaced by

(I-d_jh6)e ., ~ (I+d0hG)En - dthEA_l ~ dyhGe _, = 0, (15)
where Eh denotes the vector with components y(i)(xn) - yn(i). I is the ]
identity matrix and G is the Jacobian matrix with elements Gij = BFi/BY(J)
which are assumed constant, as in the case of a single equation. A cursory
analysis of numerical stability is available through consideration of a
characteristic polynomial corresponding to a majorization of equation (15).
However, a more detailed approach involving the eigenvalues of the matrix G

has been pursued in the present study.

RR 67-12 13
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Iterations Converge ——- —-

Relatively Stable ———— -

Absolutely Stable — — — — -

Figure 1.

Regions of Stability and Convergence of Corrector
Iterations of Variable Mesh Method RR 67-12
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Pre-multiplying equation (15) by a matrix T, representing a nonsingular

S =1 .. . - .
linear transformation such that TGT ~ = J is in cononical form, gives
(I-d_jbd)n , - (I+d bd)y - dbdy . - dhdn , = O, (16)

where ﬁn = Tzn. The diagonal elements of J are the eigenvalues of G,

and if these are distinct, all the off diagonal elements of J are zero.

In this case the system of difference equations for the propagated errors
becomes uncoupled in passing from (15) to (16), and the relevant character-
istic polynomial equation is again given by (13), with A taking on the
values hJii' If the eigenvalues of G are not distinct, the analysis is
more complicated, as indicated in [17, but the results are essentially

the same. 1In either case, however, Fig. 1 is inadequate because some

of the Jii may have nonzero imaginary parts.

It is easy to show that the zeros of any polynomial whose coefficients
are themselves polynomials in a complex variable A are the complex con-
jugates of the zeros of the same polynomial with A replaced by its con-
jugate. Thus we need only track the roots of (13) for values of A with
positive imaginary parts, the regions of numerical stability in the lower

half of the A-plane then being given by symmetry.

The problem of determining regions of stability for fixed ¢« has thus
been reduced to computing the roots of (13) for incremental values of A
in the upper half A-plane and deciding at each point whether or not we
have stability according to some appropriate definition involving the

roots. We will limit ourselves to relative stability.

Choosing a definition of relative numerical stability presents an in-

teresting situation. (We ignored this situation in the case of a single

RR 67-12 15
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differential equation. It was present but rather inconsequential.) One
would like a definition which not only provides a unique decision regard-
ing stability at each point but also reflects one's intuitive notions of
relative stability. For example, it is distressing to find it possible
to pass repeatedly back and forth from stability to instability as Xl
increases along some specified path. Two definitions were considered in
the present study-—one an extension of the Ralston definition used above
for single differential equations, and the other a definition used by
Crane and Klopfenstein [67 and also by Krogh [87]. Both definitions lead
to meaningless relative stability boundaries for fairly large complex A
As a practical matter, however, it should be remembered that numerical
stability is irrelevant for sufficiently large A since either the trunca-
tion error becomes prohibitively large or convergence of the corrector

iterations is not obtained.

The generalization of Ralston's definition to apply to systems was con-
sidered by Lea [9]. Lea defined the principal root of the characteristic
polynomial equation as the continuous function of h satisfying the poly-
nomial equation and taking on the value unity at h = 0. All others were
called extraneous. Actually however, this "definition" fails to distin-
guish between the principal and extraneous roots because two of them may
satisfy the requirements of the principal root. The following example
illustrates this deficiency and further illustrates the inability to de-

cide between stability and instability for a particular value of A.

For ¢ = 1 (fixed step size) the three roots of equation (13) are shown
in the p-plane (Fig. 2). The values corresponding to A = (-1,2) are in-
dicated by circles. Moving from the origin in the A-plane counterclock-
wise around the rectangle to (-~1,2), the roots proceed in the p—plane

from the points (1,0), (0,0), and (0,0) to the circled points along the

16 RR 67-12
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paths indicated by the arrows. The point A = (-1,2) appears stable
according to the Lea definition since the root which started at (1,0)

is the largest. However, as we continue around the rectangle in A-plane
we see upon returning to the origin that the root which started at (1,0)
is now at (0,0), while one of the roots which started at (0,0) is now at
(1,0). 1In other words, if we had proceeded clockwise in the A-plane, the
point A = (-1,2) would appear unstable.

This problem does not develop with small A; that is, when we consider a
somewhat smaller rectangle the roots return to their starting.points.

On the other hand, the problem does preclude a complete partitioning of
the A-plane into meaningful regions of stability and instability by this

procedure.

The alternate definition does uniquely partition the A-plane into regions
of stability and instability, but these regions are not acceptable for
large A . The problem here, although not recognized in either [67 or
(8], is the one mentioned earlier of alternating between stability and
instability as A increases. According to this definition, a method is
relatively stable if the modulus of each of the roots, other than the

one nearest exp(A), is less than or equal to exp[Re(A)], with equality

permitted for simple roots only.

To illustrate the problem with this definition we note first that for

o = 1, the roots of equation (13) go from the "source points," (1,0),
(0,0) and (0,0), to the "sink points," approximately (—2.37,0.0),
(0.13,-0.17), and (0.13,+0.17), not necessarily respectively, as A goes
from the origin to infinity along any path in the A-plane. Consider now,
for example, A moving along the real axis to (0.5,0.0) and then vertically

to infinity. For the vertical portion, exp(l) traverses again and again

18 RR 67-12
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the circle in the P-plane with radius exp(0.5) and center (0,0). Event-
ually, when the three roots are sufficiently close to their sink points,
they are each nearest exp(A) for a portion of each cycle of exp(A). Thus
by definition the method is relatively stable for the portion of each
cycle when the root near (-2.37,0.0) is the closest to exp(\) and unstable
otherwise. In this manner, on the vertical line Re(X) = 0.5, we have
stability up to Im(l) = 3.0, then instability to about 8.3, stability

again to about 9.9, etc.

Since the second definition has the practical advantage that its applica-
tion is independent of path in the A-plane, and since the problem just
noted apparently occurs only for excessively large A, there is no practical
"

difficulty in its usage: one simply ignores stable regions lying "outside

unstable regions.

Consequently the results shown in Fig. 3 were obtained by applying the
gsecond definition. The two definitions give very similar results for

small A and reasonable values of o, say 1/4 < <h.

Also shown in Fig. 3 are the curves Ikd_ll = 1. In a manner analogous
to the case of a single differential equation, it can be shown that for
the dominating eigenvalue of the Jacobian matrix of the system, the con-

dition lld 1| < 1 is necessary for convergence of the corrector iterations.

k. CRITERIA FOR SELECTING MESH INCREMENTS. An algorithm for the
solution of differential equations by variable mesh procedures would be
incomplete without reasonably sound, general purpose criteria for deciding
what step size to use at each step of the integration. The main informa-
tion required for specifying effective criteria was developed in the pre-—

vious sections. In essence, the mesh selection procedure discussed below

RR 67-12 19



u ROCKETIDYMNE L A DIVISION OF NORTH AMERICAN AVIATION., INC.

SuoT3Enby TBTUaILAIITd JO SWasSAS JOF POUISW UYSIW ITQETIBA JO SUOTIBINII
J01033X0) JO 3°ouaBIaAuo) pur A3TTIABIS 2ATIVI3Y JO SuorBay

*¢ aanBrd

a1qe1S A1aAT3eTaY

adxaAu0) SUOT3IBIINI W+

(¢ ywx

RR 67-12

20




m ROCKETDYNE -° A DIVISION OF NORTH AMERICAN AVIATION, INC.

represents an attempt to choose each step size just small enough so that

the following three criteria are satisfied:

a) The relative truncation error must remain within a prescribed

tolerance 0.

b) The condition for convergence of the corrector iterations must

be satisfied.

¢) The method must possess relative numerical stability.

Let Poa and €4l denote the predicted and final corrected approximations

for y(xn+1). Let H = x be the step size to be used in com-

n+2 ~ *n+l
puting the solution at X 107 and let o, be the new value of ¢ as determined
by the truncation error criterion in a manner described below. (Thus

from the truncation error criterion we will get H = h/at.)

Using the truncation error terms for the predictor and corrector formulas

obtained in Section 2, we can eliminate the factor hz YZ and obtain, through

5!

fifth order in h, the equation

(x ) - oo,y - (EAZER) ¢
Y ¥+ n+l P -C n’
n n
where Pn and Cn are given by equations (9) and (10), respectively.

We want to find ¢, such that the relative error in c is 0, that is,

t +2

'Y(xn+2) - cn+2| B 6IY(xn+2)|'
In practice we actually set

°0+1Pn+1\ ‘o B -6
Pn-Cn h5

Icn+1"
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giving
_ 1/5
. = Cn(cn+1 pn+]_) (17)
¢ 5bn+1(Pn—Cn5ﬁ

Criteria b and c above are combined to produce a single value o, for the
mesh parameter @ at the new step. To this end, we solve H = h/ac simul-
taneously with expressions approximating the boundary of the intersection
of the regions of relative stability and iteration convergence shown in

Fig. 1. For this purpose the following expressions have been found to fit

the boundary data accurately:

. : _ =z 0.5/2
fy<0. 0<ac<.25. ny— 3.2ozc

< . = -
.25 <@ < 1.0: ny 17 - 1.09%x,
= ™, = -
1.0 g < ny 1.08/01c 2,
f,>0: a, < .25: not permitted (see Fig. 1)

y
[2 +Q _ac)7/4]

< < . -
.25 ac 1.0; ny

A [

:
N

2
1.0 < @ =
ac< y mc.

An approximation for fy can be obtained from computations from the com-

pleted step:

f(xn+1 ,Pn+1) - f(xn+1,cn+1)

f =
y pn+l cn+1
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For the case fy >0, .25 f;ac =1.0, an iterative scheme is used to solve

for «

¢’

(i+1) _ Bhfyf
Yo 8 + 4(1 ~ac(i))72* '

. 0
It has been determined (by actual calculations) that with ag ) - hfy/},
ail) is always correct to within two units in the second decimal place.
Thus o, is computed according to the following simultaneous solutions of

each of the above equations with the equation H = h/&c:

-® < hf =~ .,92: o ={(1.08 -~ huf 2
. 92: a = ( 7/

I

.92 < hf =-.025: o = (.17 +4.03 - 4.36hfy)/2.18

f

, _ 2/7
025 < bf < 0: a = (—hf/3.2)

< < . =
0 hfy .875: @, .25
.875 < hf < 8/3: « = 3hf /[8 +4(1 - hfy/3)7/l*]
y c Yy
8/3 = hf_ < =: = (hf_ -2 2.
/3 y a, = ( y /3)/
The new step size H is then h/q, where a = maxﬁxt,ac).

It is the writer's experience that when even only a moderate degree of
accuracy is required, the numerical solution of most problems is limited
by accuracy rather than stability (or convergence of the iterations).

This is because (relative) numerical stability requires only that the
computed solution follow the primary trend in the true solution. If steps
as large as possible for’stability are taken, the secondary trends will

not be evident, and the computed solution may be grossly inaccurate. When
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we begin to examine mesh criteria for large systems of differential equa-
tions, it is especially fortuitous that satisfying the truncation error
criterion usually precludes instability because in this case the trunca-
tion criterion is the only one which can be feasibly incorporated into
the algorithm. For large systems the amount of computing time required
to evaluate either the Jacobian matrix G or its eigenvalues at each step
would usually be prohibitive. Of course for certain small systems it
may not be prohibitive, and then the results shown in Fig. 3 can be in-
corporated in a manner analogous to that given above for obtaining o,

in the case of a single differential equation. This procedure has proved
successful for selected systems although it did not alter the mesh in-
crements substantially from those selected by the truncation criterion

alone when reasonably small values of & were used in the latter criterion.

The mesh selection procedure recommended for most large systems thus con-
sists of using only the truncation error criteriom. Values of az are
computed from equation (17) for each component of the system, and then

o is set equal to the fifth root of the largest of these.

5. NUMERICAL TESTING AND COMPARISON WITH OTHER METHODS. The vari-
able mesh multistep method has been tested by applying it to several
single differential equations and to several systems of differential
cequations. This testing has given a fairly thorough demonstration of
the effectiveness and reliability of the algorithm. One system of sub-
stantial importance for which the variable mesh approach proved especially
effective was the problem of heat transfer to a supercritical fluid with
variable physical properties and fully developed turbulent flow in a
smooth tube [1). Another system, discussed in Ref. 10, was a stochastic
model of enzymatically controlled cooperative unwinding and template

replication of biological macromolecules. Due to the complicated
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mathematical formulation of these problems, they will not be given in de-

tail here. However, several simpler test problems are listed in Table 1.

Most of these test problems were selected because of their inherent poten-—
tial, both in the behavior of the solutions and in the behavior of the
partial derivatives of the right hand sides with respect to the dependent
variables, for producing numerical difficulties. Some are particularly
suited to a variable mesh treatment while others, No. 5, 6, 10 and 11,

can be solved efficiently with constant mesh increments. In the latter
cases it is important to note that the accuracy obtained by the variable
mesh method was about the same as that obtained using constant increments
with the same number of steps. This indicates that the variable mesh pro-

cedures do not have a degrading effect when they are used unnecessarily.

Each equation was solved on the IBM System 360 using single precision
starting values and double precision arithmetic to advance the solution.
Values of O, the target relative truncation error, ranging from 10—6 to
10—1 were used for each equation. The accuracy obtained was roughly pro-
portionate to the values of O specified. It was noted that the step
lengths were limited almost entirely by the truncation error for the
smaller values of O with the stability/convergence criterion becoming of

increasing importance with increasing 0.

Some of these problems, 1, 9, and 12, were used in comparing the new
algorithm with other fourth order numerical methods which also permit
some variability in the mesh increments. The other methods used were
the standard fourth order Runge—Xutta method, the Nordsieck method, and
the basic Adams-Bashforth/Adams-Moulton method, allowing doubling and
halving of the increments with the latter. As indicated below, the new

method proved superior to the other methods for these problems.
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Since the Runge-Kutta method requires four derivative evaluations per
step while the others were used with only two evaluations per step, half
as many steps were used with the Runge—-Xutta method as with the other

three.

The Nordsieck method permits increasing (or decreasing) the step size by
a factor 8 (or 1/8). The test problems used in the present study were
gsolved with 8 = 2, the value emphasized in L4] where the symbol "8" is used
for this factor, and also with smaller values to permit more gradual
varying of the increments. In addition, Nordsieck's interval control
mechanism requires a parameter "e" used in a manner to imply a target
error 8. For each value of 8, the problems used here were solved with
several values of e, seeking one which produced the number of steps com—
mensurate with the number used by the other methods. However for 6 = 2,
the Nordsieck method used too many steps even when e was reduced to unity.
(In fact, considerable difficulty was encountered in trying to locate
values of 6 which were usable in this sense. Successful choices are in-
dicated in Table 2.) It is also noted here that it was not necessary to
use Nordsieck's starting procedure for the test problems since all the

required initial information was available.

For Problem 1, the absolute value of the relative error in the solution
obtained by each of the four methods is shown in Fig. 4. For this problem,
the entries in Table 2 are the areas under the curves of Fig. 4. For the
other two problems, the entries in Table 2 reflect alternative measures

of relative error which are more appropriate for the numerical solution
obtained for those two systems of equations. As can be seen from the
table, the new variable mesh method gave the best performance; and the
basic Adams method, augmented with interpolation procedures to permit
doubling and halving, also did considerably better than the other two
methods.
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TABLE 2

COMPARISON OF REIATIVE ERROR

Problem | Variable Mesh Adams Runge-Kutta Nordsieck
1 1.5x 107 |2.3x107% 2.8x107 |3.0x 107 (8 = 1.01)
9 1.8 x 1077 6.0 x 10| 5.2 x 1072 1.7 x 1072 (6 =1.01)
12 2.0 x 1072 5.5 x 1072] 1.0 x 107} 6.5 x 1071 (6 = 1.5)
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